
Adversarial Windy Gridworld

Alicia Alarie1 and Jonathan Wapman2

Abstract— In this contribution, we extend the windy grid-
world reinforcement learning problem by adding the wind as
an adversarial opponent with its own reinforcement learning
policy. During a typical windy gridworld problem, an agent
attempts to move from a starting state to a destination state
while avoiding obstacles, with added disturbances that modify
the agent’s predicted state change. Typically, the wind has fixed
strength and direction. In this project, we allow the wind to
change its direction with the goal of increasing the moving
agent’s time to reach the destination state, or by giving the
moving agent a large negative reward through an action such as
pushing it into a trap. We evaluate the SARSA and Q-Learning
reinforcement learning algorithms for both the moving and
windy agents. We also evaluate the effectiveness of pretraining
the moving agent with an adversary, then changing the agent’s
environment.

I. INTRODUCTION

Often, a given environment cannot be completely de-
scribed with a simple scenario of a computerized agent
interacting with an outside environment. In the real-world,
there are many situations where a RL actor must be aware of
outside adversaries that will attempt to deliberately degrade
its performance. Adversarial reinforcement learning has been
used previously in several multi-agent environments. Our
such reference is [1], which focuses on applying adversarial
reinforcement learning to physics simulations where the
adversary is allowed to change physical parameters such
as the environment’s coefficient of friction. Other papers,
such as [2], apply adversarial reinforcement learning to a
two-player soccer game, where both agents compete against
one another following the same rules. Common adversarial
strategies are explored in [3]. These include strategically-
timed attacks with the goal of surprising the agent, and
enchanting attacks, where the adversary attempts to lure
the agent into an undesirable state. Finally, [4] contains the
single-agent SARSA and Q-Learning algorithms and analysis
of their performance in gridworld environments.

Our work presents the following contributions: 1) We
derive adversarial forms of the SARSA and Q-Learning al-
gorithms, 2) We analyze the performance of these algorithms
in 2D gridworld environments, and 3) we experiment with
applying these algorithms to changing environments, where
we first train the agent in the original environment with
and without the adversary, then change the environment to
observe how well the agents adapt to the new environment
with the goal of analyzing whether pretraining with an

1Department of Electrical and Computer Engineering, UC Davis, Davis,
CA 95616, USA aalarie@ucdavis.edu

2Department of Electrical and Computer Engineering, UC Davis, Davis,
CA 95616, USA jdwapman at ucdavis.edu

adversary produces faster relearning than pretraining with
no adversary present.

II. MULTI-AGENT ALGORITHMS

With the addition of an adversary to the gridworld envi-
ronment, the single-agent reinforcement learning algorithms
are no longer adequate. Both the agent and adversary must
now update their respective state-action pair values.

A. SARSA

The first algorithm to modify is SARSA. The primary
difference in this implementation is that the agent waits
until after the adversary has modified the agent’s position
to evaluate its reward and update its state-action value. In
Fig. 1, State 1 represents the agent’s starting state and State
3 represents the agent’s state after being modified by the
adversary. The multi-agent algorithm is given in Algorithm
1.

Fig. 1. Agent and Adversary State Transitions.

Algorithm 1 Adversarial SARSA
Require:

Algorithm parameters: step size α ∈ (0, 1], small ε > 0
1: procedure SARSA(α, ε)
2: Initialize Qag(s, a), Qadv(s, a) for all s ∈ S+, a ∈

A(s), arbitrarily except that Q(terminal) = 0
3: for each episode do
4: Initialize S1

5: while S is not terminal do
6: Choose Aag from S1 using ε-greedy policy
7: Take action Aag , observe S2

8: Choose Aadv from S2 using ε-greedy policy
9: Take action Aadv , observe R, S3

10: Qag(S1, Aag) ← Qag(S1, Aag) + α[−|R| +
γQ(S3, A

′
ag)−Qag(S1, Aag)]

11: Qadv(S2, Aadv)← Qadv(S2, Aadv)+α[|R|+
γQ(S4, A

′
adv)−Qadv(S3, Aadv)]

12: S1 ← S3

B. Q-Learning

Similar to the SARSA algorithm, the Q-Learning algo-
rithm must be modified so that the agent’s reward is evaluated
after it is moved by the adversary, with its next state being the

state it is moved to by the adversary. The modified algorithm
is given in Algorithm 2.

Algorithm 2 Adversarial Q-Learning
Require:

Algorithm parameters: step size α ∈ (0, 1], small ε > 0
1: procedure QLEARNING(α, ε)
2: Initialize Qag(s, a), Qadv(s, a) for all s ∈ S+, a ∈

A(s), arbitrarily except that Q(terminal) = 0
3: for each episode do
4: Initialize S1

5: while S is not terminal do
6: Choose Aag from S1 using ε-greedy policy
7: Take action Aag , observe S2

8: Choose Aadv from S2 using ε-greedy policy
9: Take action Aadv , observe R, S3

10: Q(S1, Aag) ← Q(S1, Aag) + α[−|R| + γ ∗
maxaQ(S3, a)−Q(S1, Aag)]

11: Q(S2, Aadv) ← Q(Sd, Aadv) + α[|R| + γ ∗
maxaQ(S4, a)−Q(S2, Aadv)]

12: S1 ← S3

C. Environment

The algorithms in this paper are tested using gridworld
examples adapted similar to those in [4]. The rules of the
environment are described below:

1) The agent can move in any coordinate direction (Up,
Down, Left, Right) once per time step.

2) After the agent moves, the adversary can modify the
agent’s new position by one state up, down or right,
with the constraint that it cannot return the agent to its
previous position. It can also choose to take no action.
(Note that left is not an action since this would prevent
the agent from ever reaching the end state).

3) The agent receives a -1 reward for each time step
when it has not reached a destination state (adversary
receives +1).

4) The agent receives a -100 reward when it enters a trap.
Entering a trap resets the agent to its starting state
(adversary receives +100).

In this environment, the agent’s states are its (row, column)
coordinates and its actions are (Up, Down, Left, Right).
The adversary’s states are the agent’s current (row, column)
coordinates and the agent’s previous action, giving (row,
column, agent action) as the adversary state values.

III. RESULTS

A. 2-Dimensional Simultaneous

The gridworld used in this analysis is shown in Fig. 2 with
the learned multi-agent paths for the SARSA and Q-Learning
algorithms overlayed. The agent starts from the blue state at
(5,1) and terminates at (5,9). The red square at (5,5) is a trap
which transitions the agent back to its start state at (5,1) with
a reward of -100. Otherwise, rewards at each time step are -1.
Agent moves are shown with blue arrows, and the adversary’s

moves are shown with red arrows In this example, the agent
using SARSA tends to avoid the trap much more effectively
than the agent using Q-learning. Because of this, the SARSA
adversary tends to focus more on increasing the number of
steps the agent must take by continuously pushing it down
(with the agent responding by taking an extra step up to
avoid nearing the trap). In contrast, the Q-Learning agent
tends to travel much nearer to the trap, so the adversary is
more likely to attempt to push the adversary into the trap.

Fig. 2. 2D Gridworld with Single Agent (100 runs).

Fig. 3. 2D Gridworld with Single Agent (100 runs).

Performance of the agent without the adversary present
can be seen in Fig. 3. The algorithms perform as expected,
with Q-Learning performing slightly worse than SARSA
since it tends to prefer travelling closer to the trap, similar to
the cliff gridworld example in [4]. In contrast, Fig. 4 shows
the average rewards over time with the agent and adversary
trained simultaneously in the previously-described gridworld
environment. Here, the adversary is able to lower the agent’s
average returns over time, visualized by the downward slope
in the plots. Additionally, the adversary is able to degrade
the agent’s performance much more significantly using Q-
Learning, since it takes advantage of Q-learning’s tendency

to travel closer to the trap (the ”optimal” route in the case
where there is no adversary and ε = 0), and when the agent
travels closer to the trap, the adversary has a higher chance
of being able to push it into the trap.

Fig. 4. 2D Gridworld with Simultaneous Training (100 runs).

B. Performance Across Environments

After an optimal policy was learned in the environment
from Fig. 2, all four agents for Q-learning and SARSA with
and without being exposed to an adversary were placed in
the new environment shown in Fig. 6. The new environment
contains constant wind forces and cliffs in a different config-
uration than the first environment where the cliff state is now
the goal state. The cumulative rewards of each agent were
tracked after being placed in the new environment and are
shown in Fig. 5. As in the results from training in the first
environment, the Q-learning agents converge to an optimal
path slightly faster than the SARSA agents. In this case, all
agents converge on the same optimal path. Additionally, the
agents with prior exposure to adversarial wind agents were
able to adapt to the new environment faster than the agents
that had been trained without the adversary.

Fig. 5. Cumulative Rewards in a new windy environment for agents trained
in a first environment with and without an adversary present (20 runs).

Fig. 6. New Environment agents were placed in after training in the first
environment from figure 2. Black spaces indicate a ”cliff” with a reward of
-100, and blue arrows indicate a fixed ”wind” which adds one movement
in the direction of the arrow when the space is landed on. The optimal path
is shown in green.

Performance in the new environment without wind in
the same environment was also tested and similar results
were observed. Fig. 7 shows the cumulative results observed
in this scenario. The Q-learning agents converged on the
correct path more quickly than SARSA agents and the agents
that had been trained with adversaries converged on the
quickest path sooner than their counterparts that had not been
trained with the adversary present. However the difference
in performance between agents trained with and without
adversaries was smaller than in the other environments. This
is expected because the adversary acts as a simulation of a
dynamic wind force.

Fig. 7. Cumulative Rewards in a new windy environment for agents trained
in a first environment with and without an adversary present (20 runs).

Promising results were also observed in the new environ-
ment with wind, but without any cliffs. Cumulative rewards
for this case are shown in Fig. 8 and the environment setup
is shown in Fig. 9. In this environment, Q-learning still
outperforms SARSA in terms of hitting the optimal path the
quickest, but there is less difference in performance between
the Q-learning agent trained with the adversary and without
the adversary present in the first environment.

Similar results were observed when the agents were placed
in a different new environment without cliffs and where the

Fig. 8. Cumulative Rewards in a new windy environment with no cliffs for
agents trained in a first environment with and without an adversary present
(20 runs).

Fig. 9. New Environment agents were placed in after training in the first
environment from Fig. 2. Blue arrows indicate a fixed ”wind” which adds
one movement in the direction of the arrow when the space is landed on.
The optimal path is shown in green.

orientation of the start and goal states was reversed. As
shown in Fig. 10, both Q-learning agents were able to adapt
more quickly than the SARSA agents, and the SARSA agent
that had been trained with the adversary adapted quicker
to the changed environment shown in Fig. 11. In general
the Q-learning agents achieved higher cumulative rewards
without the cliff present since the performance of Q-learning
is degraded by taking a path closer to the cliff spaces.

IV. CONCLUSIONS

As shown in this work, adversarial reinforcement learning
can be both very effective at destabilizing an agent’s optimal
path, and can also be a useful method of training an agent
to be more robust. First, we derived multi-step, adversarial
forms of the SARSA and Q-Learning algorithms, which are
particularly useful in environments where the agent’s next
state and reward are not known until the adversary has
also acted. Simulation on a simple gridworld environment
shows that the adversary can effectively reduce the agent’s
average reward over time. (One important note is that the
amount of decay is highly dependant on the environment).
Finally, analysis of these adversarial algorithms applied to
a changing environment shows that training the agent with
an adversary in the original environment allows the agent to
more quickly adapt to the new environment. This behavior

Fig. 10. Cumulative Rewards in a new windy environment with no cliffs for
agents trained in a first environment with and without an adversary present
(20 runs).

Fig. 11. New Environment agents were placed in after training in the first
environment from figure 2. Blue arrows indicate a fixed ”wind” which adds
one movement in the direction of the arrow when the space is landed on.
The optimal path is shown in green.

has many real-world applications in scenarions such as self-
driving vehicles (which often need to account for windy
conditions) or competitive games. In general, this paper
shows that adversarial reinforcement learning can be highly
effective at destabilizing a reinforcement learning agent, but
also that training such an agent against an adversary can lead
to notable performance improvements.

REFERENCES

[1] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, Robust Adver-
sarial Reinforcement Learning, arXiv:1703.02702 [cs], Mar. 2017.

[2] W. Uther and M. Veloso, Adversarial Reinforcement Learning, p. 18.
[3] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M.

Sun, Tactics of Adversarial Attack on Deep Reinforcement Learning
Agents, arXiv:1703.06748 [cs, stat], Mar. 2017.

[4] R. S. Sutton and A. Barto, Reinforcement learning: an introduction,
Second edition. Cambridge, MA London: The MIT Press, 2018.

